Reg. No.
g

G. VENKATASWAMY NAIDU COLLEGE (AUTONOMOUS), KOVILPATTI - 628 502.

UG DEGREE END SEMESTER EXAMINATIONS - NOVEMBER 2025.

(For those admitted in June 2023 and later)

PROGRAMME AND BRANCH: B.C.A.

SEM	CATEGORY	COMPONENT	COURSE CODE	COURSE TITLE
III	PART - III	ELECTIVE GENERIC - 3	U23CA3A3	DISCRETE MATHEMATICS

Date & Session: 12.11.2025/AN Time: 3 hours Maximum: 75 Marks

Course Outcome	Bloom's K-level	Q. No.	SECTION - A (10 X 1 = 10 Marks) Answer ALL Questions.	
CO1	K1	1.	A relation R on a set A is called a partial order if it is a) reflexive, symmetric, and transitive b) Reflexive, antisymmetric and transitive c) Antisymmetric and symmetric d) Irreflexive and transitive	
CO1	K2	2.	Let $a, b, c \in A$. Then a relation R on a set A is called antisymmetric if a) $(a, b), (b, c) \in R \Rightarrow (a, c) \in R$ b) $(a, b) \in R \Rightarrow (b, a) \in R$ c) $(a, b), (b, a) \in R \Rightarrow a = b$ d) $(a, a) \in R$	
CO2	K1	3.	How many functions are there from a set with m elements to a set with n elements is a) nm b) n^m c) m^n d) m+n	
CO2	K2	4.	The conjunction $p \land q$ is true when a) p and q are true b) p or q is true c) only p is true d) only q is true	
CO3	K1	5.		
CO3	K2	6.	The truth value of the negation of the proposition "3+6=9" is a) True b) False c) either true or false d) not a proposition	
CO4	K1	7.	An edge of the form (a,a) is called a) loop b) multi-edge c) isolated d) pendent	
CO4	K2	8.	If A is a nonsingular square matrix, then $A^{-1} = \underline{\hspace{1cm}}$. a) Det = 0 b)1/(A) adj A c) adj (A) d) A	
CO5	K1	9.	The initial vertex and terminal vertex of a loop are the a) equal b) same c) not same d) not equal	
CO5	K2	10.	An undirected graph has an even number of vertices of odd a) degree b) edges c) order d) connected	

Course Outcome	Bloom's K-level	Q. No.	$\frac{\text{SECTION} - B \text{ (5 X 5 = 25 Marks)}}{\text{Answer } \underline{\text{ALL }} \text{Questions choosing either (a) or (b)}}$
CO1	К3	11a.	Let $f: R \to R$ be defined by $ f(x) = \begin{cases} x^2 & \text{if } x < 1 \\ 2x - 1 & \text{if } x \ge 1 \end{cases} $
			Define a function g(x)=f(f(x)) (i) Find g(0) g(1) and g(2). (ii) Is g continuous at x=1? Justify. (OR)
CO1	КЗ	11b.	Let f:R \rightarrow R defined by $f(x) = \frac{x-1}{x+2}$, $x \ne -2$ (i) Find f ⁻¹ (x), the inverse of f. (ii) Verify that $f(f^{-1}(x)) = x$
CO2	К3	12a.	How many one to one functions are there from a set with m elements to set with n elements? (OR)
CO2	К3	12b.	Let $f(x)=x^2+2x+1$ and $g(x)=\sqrt{x}$, where $x\ge 0$ (i) $(f+g)(x)$ (ii) $(f \cdot g)(x)$ (iii) $(f \circ g)(x)$
CO3	K4	13a.	Show that $p \lor (q \land r)$ and $(p \lor q) \land (p \lor r)$ are logically equivalent. (OR)
CO3	K4	13b.	Show that $(p \to q) \land (q \to r) \to (p \to r)$ is a tautology.
CO4	K4	14a.	Find the rank of A = $\begin{bmatrix} 1 & 1 & 1 & 1 \\ 4 & 1 & 0 & 2 \\ 0 & 3 & 4 & 2 \end{bmatrix}$ (OR)
CO4	K4	14b.	Find the adjoint of the matrix $A = \begin{bmatrix} 2 & 4 & -1 \\ 0 & 3 & 7 \\ 8 & 1 & 5 \end{bmatrix}$
CO5	K5	15a.	Explain the different types of graphs with suitable examples. (OR)
CO5	K5	15b.	Define graph and explain how graphs are represented in memory.

Course	Bloom's	Q.	SECTION - C (5 X 8 = 40 Marks) Answer ALL Questions choosing either (a) or (b)
Outcome	K-level	No.	
CO1	К3	16a.	Let A={1,2,3}, and define relations on A as follows: R1={(1,1),(2,2),(3,3),(1,2),(2,1)} R2={(1,2),(2,3),(1,3)} (a) Classify the relation R1 on the basis of the following properties and justify: Reflexivity Symmetry

		1	m vit v	
			Transitivity	
			(b) Compute the composition R2•R2.	
			Is R2transitive? Justify your answer using your composition result (OR)	
CO1	КЗ	16b.	-	
			(i) $R_1 = \{(a, b) \mid a \le b\}.$	
			(ii) $R_2 = \{(a, b) \mid a > b\}$	
			(iii) $R_3 = \{(a, b) \mid a = bora = -b\}$	
			(iv) $R_4 = \{(a, b) \mid a = b\}$	
			(v) $R_5 = \{(a, b) \mid a = b + 1\}$	
			(vi) $R_6 = \{(a, b) \mid a + b \le 3\}$	
			Which of the relations are reflexive, symmetric, anti-symmetric.	
CO2	K4	17a.	Prove that the function $f(x) = \frac{5x-7}{2}$ is bijective.	
			(i) Find the inverse of f.	
			(ii) Verify that $f(f^{-1}(x))=x$	
			(OR)	
CO2	K4	17b.	Let	
			$f(x) = \frac{1}{x}, g(x) = x + 2$	
			(i) Find (fog)(x) and (gof)(x)	
			(ii) Are fog and gof equal? Justify your answer.	
			(iii) State the domain of fog and gof	
CO3	K4	18a.	Prove the following by developing a series of logically equivalences	
			$(i) \land (p \to q) \equiv p \land \land q$	
			$(ii) \land (p \lor (p \land q)) \equiv \land p \land \land q$	
			(iii) $(p \to q) \land (p \to r) \equiv p \to (p \land r)$	
000	T.7.4	1.01	(OR)	
CO3	K4	18b.	Use truth tables to verify the associative laws and identity law.	
CO4	K5	19a.	Define a matrix and explain the different types of matrices with	
			suitable examples. Also discuss scalar multiplication and subtraction	
			of matrices with appropriate rules and examples.	
CO4	K5	19b.	(OR)	
	110		Suppose that the relation R_1 and R_2 on a set A are represented by the matrices	
			$M_{R_1} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ and $M_{R_2} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$. What are the matrices	
			$\begin{bmatrix} \begin{array}{cccccccccccccccccccccccccccccccccccc$	
			representation of $(i)R_1 \cup R_1(ii)R_1 \cap R_2(iii)SoR(iv)R_1^2(v)R_2^2$.	
CO5	K5	20a.	What is a Subgraph? Explain with Examples and Diagrams. (OR)	
CO5	K5	20b.	Discuss the following graph operations with examples and diagrams:	
			a) Union of two graphs	
			b) Intersection of two graphs	
			c) Complement of a graph	